Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>R</mml:mi></mml:math>parity from string compactification

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>R</mml:mi></mml:math>parity from string compactification

In this paper, we embed the ${\mathbf{Z}}_{4R}$ parity as a discrete subgroup of a global symmetry ${\mathrm{U}(1)}_{\mathrm{R}}$ obtained from ${\mathbf{Z}}_{12\ensuremath{-}I}$ compactification of a heterotic string ${\mathrm{E}}_{8}\ifmmode\times\else\texttimes\fi{}{\mathrm{E}}_{8}^{\ensuremath{'}}$. A part of ${\mathrm{U}(1)}_{\mathrm{R}}$ transformation is the shift of the anticommuting variable $\ensuremath{\vartheta}$ to ${e}^{i\ensuremath{\alpha}}\ensuremath{\vartheta}$, which necessarily incorporates the transformation of the internal space …