Ask a Question

Prefer a chat interface with context about you and your work?

Critical behavior and magnetocaloric effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

Critical behavior and magnetocaloric effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

The critical properties and magnetocaloric effect of semiconducting ferrimagnet ${\mathrm{Mn}}_{3}{\mathrm{Si}}_{2}{\mathrm{Te}}_{6}$ single crystals have been investigated by bulk magnetization and heat capacity around ${T}_{c}$. Critical exponents $\ensuremath{\beta}=0.41\ifmmode\pm\else\textpm\fi{}0.01$ with a critical temperature ${T}_{c}=74.18\ifmmode\pm\else\textpm\fi{}0.08\phantom{\rule{0.16em}{0ex}}\mathrm{K}$ and $\ensuremath{\gamma}=1.21\ifmmode\pm\else\textpm\fi{}0.02$ with ${T}_{c}=74.35\ifmmode\pm\else\textpm\fi{}0.05\phantom{\rule{0.16em}{0ex}}\mathrm{K}$ are deduced by the Kouvel-Fisher plot, whereas $\ensuremath{\delta}=4.29\ifmmode\pm\else\textpm\fi{}0.05(3.40\ifmmode\pm\else\textpm\fi{}0.02)$ is obtained by a critical isotherm analysis …