Ask a Question

Prefer a chat interface with context about you and your work?

Weighted integrability of polyharmonic functions in the higher-dimensional case

Weighted integrability of polyharmonic functions in the higher-dimensional case

This paper is concerned with the $L^p$ integrability of $N$-harmonic functions with respect to the standard weights $(1-|x|^2)^{\alpha}$ on the unit ball $\mathbb{B}$ of $\mathbb{R}^n$, $n\geq 2$. More precisely, our goal is to determine the real (negative) parameters $\alpha$, for which $(1-|x|^2)^{\alpha/p} u(x) \in L^p(\mathbb{B})$ implies that $u\equiv 0$, whenever …