Improved Estimate for the Prime Counting Function
Improved Estimate for the Prime Counting Function
Using some simple combinatorial arguments, we establish some new estimates for the prime counting function and its allied functions. In particular we show that \begin{align}\pi(x)=\Theta(x)+O\bigg(\frac{1}{\log x}\bigg), \nonumber \end{align}where \begin{align}\Theta(x)=\frac{\theta(x)}{\log x}+\frac{x}{2\log x}-\frac{1}{4}-\frac{\log 2}{\log x}\sum \limits_{\substack{n\leq x\\\Omega(n)=k\\k\geq 2\\2\not| n}} \frac{\log (\frac{x}{n})}{\log 2}.\nonumber \end{align}This is an improvement to the estimate \begin{align}\pi(x)=\frac{\theta(x)}{\log x}+O\bigg(\frac{x}{\log^2 x}\bigg)\nonumber …