Ask a Question

Prefer a chat interface with context about you and your work?

Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes

Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes

0. 4) |D_{x}^{\alpha}D_{y}^{\beta}F_{i}(x, y)|\leq CA^{|\alpha|+1\beta|}|\alpha|!^{s}|\beta|!, x in \Omega , y in V , for \alpha\in N^{n\dagger 1} , \beta\in N^{r} .We define the characteristic matrix for \{F_{i}\} as follows p_{ij}(x, y, \xi)=\sum_{\alpha\in M_{ij}}(\partial/\partial y_{\alpha})F_{i}(x, y)\xi^{\alpha}|\alpha|=m+n_{j}-n_{i} ' i,j=1 , \cdots , N' .which is a polynomial in \xi of degree m+n_{j}-n_{i} …