Ask a Question

Prefer a chat interface with context about you and your work?

Periodic Tempered Distributions of Beurling Type and Periodic Ultradifferentiable Functions with Arbitrary Support

Periodic Tempered Distributions of Beurling Type and Periodic Ultradifferentiable Functions with Arbitrary Support

Let <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msubsup><mml:mrow><mml:mi mathvariant="script">S</mml:mi></mml:mrow><mml:mrow><mml:mi>ω</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">′</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> be the space of tempered distributions of Beurling type with test function space <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mrow><mml:mi mathvariant="script">S</mml:mi></mml:mrow><mml:mrow><mml:mi>ω</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and let <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">E</mml:mi></mml:mrow><mml:mrow><mml:mi>ω</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> be the space of ultradifferentiable functions with arbitrary support having a period <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>. We show …