Ask a Question

Prefer a chat interface with context about you and your work?

Certain Integral Operator Related to the Hurwitz–Lerch Zeta Function

Certain Integral Operator Related to the Hurwitz–Lerch Zeta Function

The aim of the present paper is to investigate several third-order differential subordinations, differential superordination properties, and sandwich-type theorems of an integral operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi mathvariant="script">W</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:msub><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> involving the Hurwitz–Lerch Zeta function. We make some applications of the operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mrow><mml:mi mathvariant="script">W</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:msub><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> for meromorphic functions.