Certain Integral Operator Related to the Hurwitz–Lerch Zeta Function
Certain Integral Operator Related to the Hurwitz–Lerch Zeta Function
The aim of the present paper is to investigate several third-order differential subordinations, differential superordination properties, and sandwich-type theorems of an integral operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi mathvariant="script">W</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:msub><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> involving the Hurwitz–Lerch Zeta function. We make some applications of the operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mrow><mml:mi mathvariant="script">W</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:msub><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> for meromorphic functions.