Prefer a chat interface with context about you and your work?
Large nematic susceptibility in the double- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Q</mml:mi><mml:mspace width="0.16em" /><mml:msub><mml:mi>C</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> magnetic phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Na</mml:mi><mml:mi>x</mml:mi></mml:msub><…
The nematic susceptibility of ${\mathrm{Ba}}_{1\ensuremath{-}x}{\mathrm{Na}}_{x}{\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$ single crystals is studied by measuring the Young's modulus using a three-point-bending setup in a capacitance dilatometer over a wide doping range. Particular emphasis is placed on the behavior within the double-Q antiferromagnetic ${C}_{4}$ re-entrant phase. Here, we surprisingly still observe a sizable nematic susceptibility …