Prefer a chat interface with context about you and your work?
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>ψ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Meir-Keeler Contraction Mappings in Generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math>-Metric Spaces
We present a fixed point theorem for generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mo stretchy="false">(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>ψ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Meir-Keeler type contractions in the setting of generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math>-metric spaces. The presented results improve, generalize, and unify many existing famous results in the corresponding literature.