Decompositions and measures on countable Borel equivalence relations
Decompositions and measures on countable Borel equivalence relations
We show that the uniform measure-theoretic ergodic decomposition of a countable Borel equivalence relation $(X, E)$ may be realized as the topological ergodic decomposition of a continuous action of a countable group $\Gamma \curvearrowright X$ generating $E$. We then apply this to the study of the cardinal algebra $\mathcal K(E)$ …