Ask a Question

Prefer a chat interface with context about you and your work?

IR duality in 2D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> gauge theory with noncompact dynamics

IR duality in 2D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> gauge theory with noncompact dynamics

Searching for the simplest non-Abelian 2D gauge theory with $\mathcal{N}=(0,2)$ supersymmetry and nontrivial IR physics, we propose a new duality for $SU(2)$ SQCD with ${N}_{f}=4$ chiral flavors. The chiral algebra of this theory is found to be $\mathfrak{so}(8{)}_{\ensuremath{-}2}$, the same as in 4D $\mathcal{N}=2$ $SU(2)$ gauge theory with four hypermultiplets.