Uniqueness for Neumann problems for nonlinear elliptic equations
Uniqueness for Neumann problems for nonlinear elliptic equations
In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is \begin{document}$\left\{ \begin{align} & -\text{div}({{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u)-\text{div}(c(x)|u{{|}^{p-2}}u)=f\ \ \ \text{in}\ \Omega , \\ & \left( {{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u+c(x)|u{{|}^{p-2}}u \right)\cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}=0\ \ \ \text{on}\ \partial \Omega , \\ \end{align} \right.$ \end{document} …