Ask a Question

Prefer a chat interface with context about you and your work?

Relative Chow stability and optimal weights

Relative Chow stability and optimal weights

For a polarized Kähler manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper X comma upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(X,L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show the equivalence between relative balanced embeddings introduced by Mabuchi and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- …