On the Hamilton–Waterloo problem with odd cycle lengths
On the Hamilton–Waterloo problem with odd cycle lengths
Abstract Let denote the complete graph if v is odd and , the complete graph with the edges of a 1‐factor removed, if v is even. Given nonnegative integers , the Hamilton–Waterloo problem asks for a 2‐factorization of into α ‐factors and β ‐factors, with a ‐factor of being a …