Ask a Question

Prefer a chat interface with context about you and your work?

Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities

Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities

This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">′</mml:mi><mml:mi mathvariant="normal">′</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">′</mml:mi></mml:mrow></mml:msup><mml:mfenced separators="|"><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>t</mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi></mml:math>, where the nonlinearity <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi></mml:math> is continuous and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> is …