ON GENERALIZED FRACTIONAL INTEGRALS
ON GENERALIZED FRACTIONAL INTEGRALS
It is known that the fractional integral $I_\alpha (0 \lt \alpha \le n)$ is bounded from $L^p({\mathbb R}^n)$ to $L^q ({\mathbb R}^n)$ when $p \gt 1$ and $n/p - \alpha = n/q \gt 0$, from $L^p({\mathbb R}^n)$ to BMO$({\mathbb R}^n)$ when $p \gt 1$ and $n/p - \alpha = 0$, …