A modular compactification of ℳ<sub>1,<i>n</i> </sub> from <i>A</i> <sub>∞</sub>-structures
A modular compactification of ℳ<sub>1,<i>n</i> </sub> from <i>A</i> <sub>∞</sub>-structures
Abstract We show that a certain moduli space of minimal <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>A</m:mi> <m:mi>∞</m:mi> </m:msub> </m:math> A_{\infty} -structures coincides with the modular compactification <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mover> <m:mi>ℳ</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> …