On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs
On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs
Graph Theory For a positive integer n∈ℕ and a set D⊆ ℕ, the distance graph GnD has vertex set { 0,1,\textellipsis,n-1} and two vertices i and j of GnD are adjacent exactly if |j-i|∈D. The condition gcd(D)=1 is necessary for a distance graph GnD being connected. Let D={d1,d2}⊆ℕ be such …