Prefer a chat interface with context about you and your work?
Double transverse spin asymmetry in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>p</mml:mi><mml:mo>↑</mml:mo></mml:msup><mml:msup><mml:mover accent="true"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mo>↑</mml:mo></mml:msup></mml:math>Drell-Yan process from Sivers functions
We show that the transverse double spin asymmetry in the Drell-Yan process contributed only from the Sivers functions can be picked out by the weighting function $\frac{{Q}_{T}}{{M}^{2}}(\mathrm{cos}(\ensuremath{\phi}\ensuremath{-}{\ensuremath{\phi}}_{{S}_{1}})\mathrm{cos}(\ensuremath{\phi}\ensuremath{-}{\ensuremath{\phi}}_{{S}_{2}})+3\mathrm{sin}(\ensuremath{\phi}\ensuremath{-}{\ensuremath{\phi}}_{{S}_{1}})\mathrm{sin}(\ensuremath{\phi}\ensuremath{-}{\ensuremath{\phi}}_{{S}_{2}}))$. The asymmetry is proportional to the product of two Sivers functions from each hadron ${f}_{1T}^{\ensuremath{\perp}(1)}\ifmmode\times\else\texttimes\fi{}{f}_{1T}^{\ensuremath{\perp}(1)}$. Using two sets of Sivers functions extracted from …