Ask a Question

Prefer a chat interface with context about you and your work?

Existence of multiple solutions for fractional p-Kirchhoff equations with concave-convex nonlinearities

Existence of multiple solutions for fractional p-Kirchhoff equations with concave-convex nonlinearities

In this paper, we investigate the existence of multiple solutions for Kirchhoff-type equations involving nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions as follows: $$ \textstyle\begin{cases} M(\int_{\mathbb{R}^{2n}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{n+sp}}\,dx\, dy)(-\triangle )_{p}^{s}u=\lambda|u|^{q-2}u+\frac{\alpha}{\alpha+\beta}|u|^{\alpha -2}u|v|^{\beta}, & \mbox{in }\Omega, \\ M(\int_{\mathbb{R}^{2n}}\frac{|v(x)-v(y)|^{p}}{|x-y|^{n+sp}}\,dx\, dy)(-\triangle )_{p}^{s}v=\mu|v|^{q-2}v+\frac{\beta}{\alpha+\beta}|v|^{\beta -2}v|u|^{\alpha}, & \mbox{in }\Omega, \\ u=v=0, & \mbox{in }\mathbb{R}^{n}\setminus\Omega, \end{cases} $$ where Ω …