Coefficients of strongly alpha-convex and alpha-logarithmicaly convex functions
Coefficients of strongly alpha-convex and alpha-logarithmicaly convex functions
Let the function $f$ be analytic in $D=\{z:|z|<1\}$ and be given by $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}$. For $0< \beta \le 1$, denote by $C (\beta)$ and $S^*(\beta)$ the classes of strongly convex functions and strongly starlike functions respectively. For $0\le \alpha \le1$ and $0< \beta \le 1$, let $M(\alpha, \beta)$ be the class …