Ask a Question

Prefer a chat interface with context about you and your work?

Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>τ</mml:mi></mml:mrow></mml:math> Lepton Polarization and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>R</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> in the Decay <mml:math xmlns:mml="…

Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>τ</mml:mi></mml:mrow></mml:math> Lepton Polarization and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>R</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> in the Decay <mml:math xmlns:mml="…

We report the first measurement of the $\ensuremath{\tau}$ lepton polarization ${P}_{\ensuremath{\tau}}({D}^{*})$ in the decay $\overline{B}\ensuremath{\rightarrow}{D}^{*}{\ensuremath{\tau}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\tau}}$ as well as a new measurement of the ratio of the branching fractions $R({D}^{*})=\mathcal{B}(\overline{B}\ensuremath{\rightarrow}{D}^{*}{\ensuremath{\tau}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\tau}})/\mathcal{B}(\overline{B}\ensuremath{\rightarrow}{D}^{*}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\ell}})$, where ${\ensuremath{\ell}}^{\ensuremath{-}}$ denotes an electron or a muon, and the $\ensuremath{\tau}$ is reconstructed in the modes ${\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}}$ and ${\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}}$. We use …