Ask a Question

Prefer a chat interface with context about you and your work?

Anomalous Hall effect in a ferromagnetic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Sn</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>single crystal with a geometrically frustrated Fe bilayer kagome lattice

Anomalous Hall effect in a ferromagnetic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Sn</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>single crystal with a geometrically frustrated Fe bilayer kagome lattice

The anomalous Hall effect (AHE) is investigated for a ferromagnetic ${\mathrm{Fe}}_{3}{\mathrm{Sn}}_{2}$ single crystal with a geometrically frustrated kagome bilayer of Fe. The scaling behavior between anomalous Hall resistivity ${\ensuremath{\rho}}_{xy}^{A}$ and longitudinal resistivity ${\ensuremath{\rho}}_{xx}$ is quadratic and further analysis implies that the AHE in the ${\mathrm{Fe}}_{3}{\mathrm{Sn}}_{2}$ single crystal should be dominated …