Ask a Question

Prefer a chat interface with context about you and your work?

A set-valued approach to hemivariational inequalities

A set-valued approach to hemivariational inequalities

Let $X$ be a Banach space, $X^*$ its dual and let $T\colon X\to L^p(\Omega ,\mathbb {R}^k)$ be a linear, continuous operator, where $p, k\ge 1$, $\Omega $ being a bounded open set in $\mathbb {R}^N$. Let $K$ be a subset of $X$, ${\mathcal A}\colon K\rightsquigarrow X^*$, $G\colon K\times X\rightsquigarrow \mathbb …