Ask a Question

Prefer a chat interface with context about you and your work?

Holographic duality between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-dimensional quantum anomalous Hall state and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-dimensional topological insulators

Holographic duality between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-dimensional quantum anomalous Hall state and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-dimensional topological insulators

In this paper, we study $(2+1)$-dimensional quantum anomalous Hall states, i.e., band insulators with quantized Hall conductance, using exact holographic mapping. Exact holographic mapping is an approach to holographic duality which maps the quantum anomalous Hall state to a different state living in $(3+1)$-dimensional hyperbolic space. By studying topological response …