Sur les ${\bf Z}_2$-extensions d'un corps quadratique imaginaire
Sur les ${\bf Z}_2$-extensions d'un corps quadratique imaginaire
Let k=Q(-m) be an imaginary quadratic field, let k ∞ and F be its two natural Z 2 -extensions (the cyclotomic and the prodiedral one), and let k ˇ be its 2-Hilbert class field. Let 𝒫 be the completion of k at 2, ρ=0 or 1 equals 1 if and …