Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetric coupler with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>χ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:math>nonlinearity

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetric coupler with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>χ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:math>nonlinearity

We introduce the notion of a $\mathcal{PT}$-symmetric dimer with a ${\ensuremath{\chi}}^{(2)}$ nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of …