Ask a Question

Prefer a chat interface with context about you and your work?

Hamiltonian truncation study of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>theory in two dimensions. II. The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-broken phase and the Chang duality

Hamiltonian truncation study of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>theory in two dimensions. II. The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-broken phase and the Chang duality

The Fock-space Hamiltonian truncation method is developed further, paying particular attention to the treatment of the scalar field zero mode. This is applied to the two-dimensional Phi^4 theory in the phase where the Z_2-symmetry is spontaneously broken, complementing our earlier study of the Z_2-invariant phase and of the critical point. …