Ask a Question

Prefer a chat interface with context about you and your work?

Antiferromagnetism,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math>-wave, and chiral<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math>-wave superconductivity in a kagome lattice with possible application to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>graphenes

Antiferromagnetism,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math>-wave, and chiral<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math>-wave superconductivity in a kagome lattice with possible application to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>graphenes

We investigate the electronic instabilities in a kagome lattice with Rashba spin-orbital coupling by the unbiased singular-mode functional renormalization group. At the parent $1/3$ filling, the normal state is a quantum spin Hall system. Since the bottom of the conduction band is near the van Hove singularity, the electron-doped system …