Ask a Question

Prefer a chat interface with context about you and your work?

Remarks on the Ruelle operator and the invariant line fields problem: II

Remarks on the Ruelle operator and the invariant line fields problem: II

Let R be a rational map. A critical point c is called summable if the series $\sum_i(1/(R^i)'(R(c)))$ is absolutely convergent. Under certain topological conditions on the postcritical set we prove that R cannot be structurally stable if it has a summable critical point $c \in J(R)$.