Approximating the coefficients in semilinear stochastic partial differential equations
Approximating the coefficients in semilinear stochastic partial differential equations
We investigate, in the setting of UMD Banach spaces E, the continuous dependence on the data A, F, G and ξ of mild solutions of semilinear stochastic evolution equations with multiplicative noise of the form $$ \left\{ \begin{array}{l} {\rm d}X(t) = [AX(t) + F(t, X(t))] \, {\rm d}t + G(t, …