Logarithmic superconformal minimal models
Logarithmic superconformal minimal models
The higher fusion level logarithmic minimal models LM(P,P';n) have recently been constructed as the diagonal GKO cosets (A_1^{(1)})_k oplus (A_1^{(1)})_n / (A_1^{(1)})_{k+n} where n>0 is an integer fusion level and k=nP/(P'-P)-2 is a fractional level. For n=1, these are the logarithmic minimal models LM(P,P'). For n>1, we argue that these …