Lattices with many Borcherds products
Lattices with many Borcherds products
We prove that there are only finitely many isometry classes of even lattices $L$ of signature $(2,n)$ for which the space of cusp forms of weight $1+n/2$ for the Weil representation of the discriminant group of $L$ is trivial. We compute the list of these lattices. They have the property …