On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions
On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions
A remarkably large number of fractional integral formulas involving the number of special functions, have been investigated by many authors. Very recently, Agarwal (National Academy Science Letters) gave some integral transform and fractional integral formulas involving the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msubsup><mml:mrow><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msubsup><mml:mfenced separators="|"><mml:mrow><mml:mo>·</mml:mo></mml:mrow></mml:mfenced></mml:math>. In this sequel, here, we aim to establish some …