Eigenvalues of GUE Minors
Eigenvalues of GUE Minors
Consider an infinite random matrix $H=(h_{ij})_{0 < i,j}$ picked from the Gaussian Unitary Ensemble (GUE). Denote its main minors by $H_i=(h_{rs})_{1\leq r,s\leq i}$ and let the $j$:th largest eigenvalue of $H_i$ be $\mu^i_j$. We show that the configuration of all these eigenvalues $(i,\mu_j^i)$ form a determinantal point process on $\mathbb{N}\times\mathbb{R}$. …