Ask a Question

Prefer a chat interface with context about you and your work?

On the Open Problem Related to Rank Equalities for the Sum of Finitely Many Idempotent Matrices and Its Applications

On the Open Problem Related to Rank Equalities for the Sum of Finitely Many Idempotent Matrices and Its Applications

Tian and Styan have shown many rank equalities for the sum of two and three idempotent matrices and pointed out that rank equalities for the sum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mo>⋯</mml:mo><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:math>with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:math>be idempotent (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>k</mml:mi><mml:mo>&gt;</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:math>) are still open. In this paper, by using block Gaussian elimination, we obtained …