Ask a Question

Prefer a chat interface with context about you and your work?

Measurement of branching fractions of color-suppressed decays of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>meson to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>*</mml:mi><mml:mo>)</mml:mo><mml:mn>0</mml:mn><…

Measurement of branching fractions of color-suppressed decays of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>meson to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>*</mml:mi><mml:mo>)</mml:mo><mml:mn>0</mml:mn><…

Using a sample of $88.8\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $B\overline{B}$ events collected with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center, we measure the branching fractions of seven color-suppressed B-meson decays: $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{0}{\ensuremath{\pi}}^{0})=[2.9\ifmmode\pm\else\textpm\fi{}0.2(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.3(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{*0}{\ensuremath{\pi}}^{0})=[2.9\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.5(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{0}\ensuremath{\eta})=[2.5\ifmmode\pm\else\textpm\fi{}0.2(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.3(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{*0}\ensuremath{\eta})=[2.6\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{0}\ensuremath{\omega})=[3.0\ifmmode\pm\else\textpm\fi{}0.3(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{*0}\ensuremath{\omega})=[4.2\ifmmode\pm\else\textpm\fi{}0.7(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.9(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4},$ and $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{0}{\ensuremath{\eta}}^{\ensuremath{'}})=[1.7\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.2(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}.$ We set the 90% confidence-level upper limit: $\mathcal{B}({B}^{0}\ensuremath{\rightarrow}{D}^{*0}{\ensuremath{\eta}}^{\ensuremath{'}})<2.6\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}.$ The …