Ask a Question

Prefer a chat interface with context about you and your work?

Anisotropies of the Lower and Upper Critical Fields in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mi mathvariant="normal">M</mml:mi><mml:mi mathvariant="normal">g</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math>Single Crystals

Anisotropies of the Lower and Upper Critical Fields in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mi mathvariant="normal">M</mml:mi><mml:mi mathvariant="normal">g</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math>Single Crystals

The temperature dependence of the upper (${H}_{c2}$) and lower (${H}_{c1}$) critical fields has been deduced from Hall probe magnetization measurements of high quality ${\mathrm{M}\mathrm{g}\mathrm{B}}_{2}$ single crystals along the two main crystallographic directions. We show that ${\ensuremath{\Gamma}}_{{H}_{c2}}={H}_{c2\ensuremath{\parallel}ab}/{H}_{c2\ensuremath{\parallel}c}$ and ${\ensuremath{\Gamma}}_{{H}_{c1}}={H}_{c1\ensuremath{\parallel}c}/{H}_{c1\ensuremath{\parallel}ab}$ differ significantly at low temperature (being $\ensuremath{\sim}5$ and $\ensuremath{\sim}1$, respectively) and have …