Ask a Question

Prefer a chat interface with context about you and your work?

Spin-orbit physics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>j</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math>Mott insulators on the triangular lattice

Spin-orbit physics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>j</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math>Mott insulators on the triangular lattice

The physics of spin-orbital entanglement in effective $j=\frac{1}{2}$ Mott insulators, which have been experimentally observed for various $5d$ transition-metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models thought to capture their essential microscopic interactions. Here, we argue that the recently synthesized ${\mathrm{Ba}}_{3}{\mathrm{IrTi}}_{2}{\mathrm{O}}_{9}$ is a prime candidate for a microscopic …