Ask a Question

Prefer a chat interface with context about you and your work?

Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi></mml:math>-hydride/halide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="normal">N</mml:mi><mml:mi>โ€“</mml:mi><mml:mi mathvariant="normal">Bi</mml:mi><mml:mo>)</mml:mo></mml:math>monolayers

Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi></mml:math>-hydride/halide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="normal">N</mml:mi><mml:mi>โ€“</mml:mi><mml:mi mathvariant="normal">Bi</mml:mi><mml:mo>)</mml:mo></mml:math>monolayers

Using the tight-binding method in combination with first-principles calculations, we systematically derive a low-energy effective Hilbert subspace and Hamiltonian with spin-orbit coupling for two-dimensional hydrogenated and halogenated group-V monolayers. These materials are proposed to be giant-gap quantum spin Hall insulators with record huge bulk band gaps opened by the spin-orbit โ€ฆ