A nonlinear ergodic theorem for a reversible semigroup of Lipschitzian mappings in a Hilbert space
A nonlinear ergodic theorem for a reversible semigroup of Lipschitzian mappings in a Hilbert space
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a nonempty closed convex subset of a Hilbert space, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a right reversible semitopological semigroup, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper S equals …