On the existence of saturated models of stable theories
On the existence of saturated models of stable theories
It is proven that a theory <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> stable in a power <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ</mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda greater-than StartAbsoluteValue upper T EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mrow …