Ask a Question

Prefer a chat interface with context about you and your work?

Efficient parametrization of the vertex function,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Ω</mml:mi></mml:math>scheme, and the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>t</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:mrow></mml:math>Hubbard model at van Hove filling

Efficient parametrization of the vertex function,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Ω</mml:mi></mml:math>scheme, and the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>t</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:mrow></mml:math>Hubbard model at van Hove filling

We propose a parametrization of the four-point vertex function in the one-loop one-particle irreducible renormalization group (RG) scheme for fermions. It is based on a decomposition of the effective two-fermion interaction into fermion bilinears that interact via exchange bosons. The numerical computation of the RG flow of the boson propagators …