Groups, semilattices and inverse semigroups. I, II
Groups, semilattices and inverse semigroups. I, II
An inverse semigroup <italic>S</italic> is called proper if the equations <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="e a equals e equals e squared"> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>e</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">ea = e = {e^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together imply <inline-formula content-type="math/mathml"> <mml:math …