Ask a Question

Prefer a chat interface with context about you and your work?

Universality in the three-body problem for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:math>atoms

Universality in the three-body problem for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:math>atoms

The two-body scattering length a for ${}^{4}\mathrm{He}$ atoms is much larger than their effective range ${r}_{s}.$ As a consequence, low-energy few-body observables have universal characteristics that are independent of the interaction potential. Universality implies that, up to corrections suppressed by ${r}_{s}/a,$ all low-energy three-body observables are determined by a and …