Ask a Question

Prefer a chat interface with context about you and your work?

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

Let {<TEX>$X,\;X_n;n{\geq}1$</TEX>} be a sequence of i.i.d. random variables. Set <TEX>$S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$</TEX>. Then we obtain that for any -1<b<1/2, <TEX>$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$</TEX> if and only if EX=0 and <TEX>$EX^2={\sigma}^2</TEX><TEX><</TEX><TEX>{\infty}$</TEX>.