The Empirical Process of some Long-Range Dependent Sequences with an Application to $U$-Statistics
The Empirical Process of some Long-Range Dependent Sequences with an Application to $U$-Statistics
Let $(X_j)^\infty_{j = 1}$ be a stationary, mean-zero Gaussian process with covariances $r(k) = EX_{k + 1} X_1$ satisfying $r(0) = 1$ and $r(k) = k^{-D}L(k)$ where $D$ is small and $L$ is slowly varying at infinity. Consider the two-parameter empirical process for $G(X_j),$ $\bigg\{F_N(x, t) = \frac{1}{N} \sum^{\lbrack Nt …