$L$-functions of twisted diagonal exponential sums over finite fields
$L$-functions of twisted diagonal exponential sums over finite fields
Let $\textbf {F}_q$ be the finite field of $q$ elements with characteristic $p$ and $\textbf {F}_{q^m}$ its extension of degree $m$. Fix a nontrivial additive character $\Psi$ and let $\chi _1,..., \chi _n$ be multiplicative characters of $\textbf {F}_p.$ For \[ f(x_1,...,x_n) \in \textbf {F}_q[x_1,x_1^{-1},...,x_n,x^{-1}_n],\] one can form the twisted …