Ask a Question

Prefer a chat interface with context about you and your work?

Nearly flat band with Chern number<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>C</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>on the dice lattice

Nearly flat band with Chern number<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>C</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>on the dice lattice

We point out the possibility of a nearly flat band with Chern number $C=2$ on the dice lattice in a simple nearest-neighbor tight-binding model. This lattice can be naturally formed by three adjacent $(111)$ layers of cubic lattice, which may be realized in certain thin films or artificial heterostructures, such …