A normal form theorem for lattices completely generated by a subset
A normal form theorem for lattices completely generated by a subset
For an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German m"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">m</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-complete lattice <italic>L</italic> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German m"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">m</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an infinite regular cardinal) and subset <italic>X</italic> of <italic>L</italic> …